
Let’s Make a Toast 

Toasts are transient Dialog boxes that remain visible for only a few seconds before fading out. Toasts don’t steal focus and are 

non-modal, so they don’t interrupt the active application. 

 

Toasts are perfect for informing your users of events without forcing them to open an Activity or read a Notifi cation. They 

provide an ideal mechanism for alerting users to events occurring in background Services without interrupting foreground 

applications. 

 

The Toast class includes a static makeText method that creates a standard Toast display window. Pass the application Context, 

the text message to display, and the length of time to display it (LENGTH_SHORT or LENGTH_LONG) in to the makeText 

method to construct a new Toast. Once a Toast has been created, display it by calling show, as shown in the following snippet: 
 

Context context = getApplicationContext(); 
String msg = “To health and happiness!”; 
int duration = Toast.LENGTH_SHORT; 
Toast toast = Toast.makeText(context, msg, duration); 
toast.show(); 

 

Figure 8-1 shows a Toast. It will remain on screen for around 2 seconds before fading out. The application behind it remains fully 

responsive and interactive while the Toast is visible. 

 

Figure 8-1 
 

Customizing Toasts 
The standard Toast text message window is often suffi cient, but in many situations you’ll want to customize its appearance and 

screen position. You can modify a Toast by setting its display position and assigning it alternative Views or layouts. 

 

The following snippet shows how to align a Toast to the bottom of the screen using the setGravity method: 
Context context = getApplicationContext(); 
String msg = “To the bride an groom!”; 
int duration = Toast.LENGTH_SHORT; 
Toast toast = Toast.makeText(context, msg, duration); 
int offsetX = 0; 
int offsetY = 0; 
toast.setGravity(Gravity.BOTTOM, offsetX, offsetY); 
toast.show(); 

When a text message just isn’t going to get the job done, you can specify a custom View or layout to use a more complex, or 

more visual, display. Using setView on a Toast object, you can specify any View (including layouts) to display using the 

transient message window mechanism. 

 



For example, the following snippet assigns a layout, containing the CompassView widget from Chapter 4 along with a 

TextView, to be displayed as a Toast. 

 
Context context = getApplicationContext(); 
String msg = “Cheers!”; 
int duration = Toast.LENGTH_LONG; 
Toast toast = Toast.makeText(context, msg, duration); 
toast.setGravity(Gravity.TOP, 0, 0); 
LinearLayout ll = new LinearLayout(context); 
ll.setOrientation(LinearLayout.VERTICAL); 
TextView myTextView = new TextView(context); 
CompassView cv = new CompassView(context); 
myTextView.setText(msg); 
int lHeight = LinearLayout.LayoutParams.FILL_PARENT; 
int lWidth = LinearLayout.LayoutParams.WRAP_CONTENT; 
ll.addView(cv, new LinearLayout.LayoutParams(lHeight, lWidth)); 
ll.addView(myTextView, new LinearLayout.LayoutParams(lHeight, lWidth)); 
ll.setPadding(40, 50, 0, 50); 
toast.setView(ll); 
toast.show(); 

The resulting Toast will appear as shown in Figure 8-2. 

 

Figure 8-2 
 

Using Toasts in Worker Threads 
As GUI components, Toasts must be opened on the GUI thread or risk throwing a cross thread exception. In the following 

example, a Handler is used to ensure that the Toast is opened on the GUI thread: 
private void mainProcessing() { 
Thread thread = new Thread(null, doBackgroundThreadProcessing, “Background”); 
thread.start(); 
} 
private Runnable doBackgroundThreadProcessing = new Runnable() { 
public void run() { 
backgroundThreadProcessing(); 
} 
}; 
private void backgroundThreadProcessing() { 
handler.post(doUpdateGUI); 
} // Runnable that executes the update GUI method. 
private Runnable doUpdateGUI = new Runnable() { 
public void run() { 
Context context = getApplicationContext(); 
String msg = “To open mobile development!”; 
int duration = Toast.LENGTH_SHORT; 
Toast.makeText(context, msg, duration).show();}}; 


